TUNED TRANSFORMERS .

Design of these electronic units simplified
by means of universal performance curves

PART |

By J. E. MAYNARD

Electronics Depdrtment, General Electric Company

N THE age of electronics we visualize a myriad of
vacuum tubes accomplishing feats of almost
intelligent character. We feel the need of knowing

how these tubes function and this immediately pre-
sents the question—into what sort of electric circuits
will these tubes work?

One of the functions which electronic devices will
perform will be the selection of a proper signal for
action. In radio engineering, selection immediately
suggests frequency selectivity and this method of
discrimination will undoubtedly find application in
many other electronic devices. Not only will this

+100v L +250v

Fig. 1. An amplifier stage containing

two tuned transformers

Fig. 2. A single tuned circuit

discrimination be applied to electric currents and
voltages but also to mechanical and sound vibrations.
By the proper analogs our information on electric
cricuits may be used for mechanical design.®

Selectivity

Tuned circuits have long been used in radio equip-
ment to provide this frequency selection. The most
elementary selective device is a single resonant circuit.
For a greater degree of selectivity cascaded resonant
tircuits are used. If the cascaded circuits are prevented
from reacting in a backward direction by insertion of
amplifier tubes between circuits, they retain their
simple selective character. However, if two or more
drcuits are connected together so that a later one can
influence an earlier one through a common coupling,
the selection against frequency is no longer a simple
tesonance curve, but may pass a range of frequencies
and attenuate or reduce the response to other fre-
quencies. The shape of the frequency-selective charac-
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. ()"Applications and Limitations of Mechanical-electrical Analogies,
New and Old,” by John Miles, Journal of the Acoustical Society of America,
Yol. 14, p. 183, January, 1943.
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teristic then depends on the coupling between circuits
and we have what may be called a tuned transformer.
Tuned transformers, consisting of two resonant
circuits with common coupling, provide, with appro-
priate design, nearly all the frequency-selective charac-
teristics of a band-pass nature which may be desired.
Sharper selection against undesired frequencies than is
obtainable with one such transformer is obtained by
cascading transformers, using amplifier tubes to isolate
later transformers from earlier ones. An amplifier stage
containing such transformers is illustrated in Fig. 1.

Design Curves

A set of design curves can be developed for the
selective performance of thdse transformers.® The
development of the formula for the curves will be
briefly reviewed.

A single tuned circuit, Fig. 2, has a series impedance
Z=e¢/i=R+j (X.—X,). Calling resonant frequency
fo where Xo=X; =X, then for any frequency f

Z=R (14jt), if t=00 (f/fo—fo/f), Qu=Xo/R (1)
where ¢ is the tangent of the phase angle between ¢ and
i, and Qo is the ‘‘quality factor” of the coil at fo.
Quality factor or Q is widely used in coil measurement
and is the ratio of reactance to resistance at a specified
frequency.

This single circuit has a parallel impedance across
X. of
7= X (R+]XL) =jX0 (fo/f’*']QO) (2)

R+] (.YL‘—Xc) 1+]t

Assuming Qo is five or more the magnitude of this
impedance will be very nearly

_ XoQu
N1+

VA (3)

The variable ¢ may be further simplified and inter-
preted. By ordinary algebraic manipulation

t=0Qo (Af/fo) (L+fo/f), if Af=f—fo (4)

()" Universal Performance Curves for Tuned Transformers,” by J. E.
Maynard, Electronics, vol. 10, p. 15, February, 1937.
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Making the approximation fo/f=1.0 (near f,)
t=2Af Qo/fo (5)

The impedahce of the single circuit may, therefore, be
calculated in terms of frequency deviation from
resonance for a coil of given Q. If the circuit contains
a load resistance (Ry) in parallel with the capacitor,
this may be taken into consideration in writing the
original parallel impedance, in which case we will find
that the result can be written ’
_ Xo Qol O ! RL

0
, where == =

Vi+@): Qo

so that the net effect is a change in Q,. An amplifier
tube working into such an impedance may be analyzed
by the conventional generator method using a voltage
ueg driving the impedance Z through a plate resistance
R,. If this is done, the voltage across the impedance
Z will be

, Ry Z
— (/R e (
ez=(u/Rp) ec RotZ

Zo+Ry fo

)=gm e 2’ ()

where gm is the tube's mutual conductance and Z' is
the impedance of the circuit determined by a O
which includes R, in parallel with the circuit. The ratio
e-'eg is the voltage gain of the amplifier.

If we take the ratio of voltage gain at resonant
frequency fo to the voltage gain at any frequency f,
this will be a measure of the selectivity of the circuit

U=Go/Gr=gmZo/gm Z=\’]1+t"’ (8)

’y

This ‘“attenuation’ U is the ‘‘number of times down
or the reduction ratio between the outputs from a
resonant signal and some other equal signal at a
frequency deviation of Af from resonance.

In order to cover a large ratio of attenuation,
selectivity curves are usually plotted using a vertical
logarithmic scale for attenuation and a horizontal
linear scale for frequency deviation, as shown in Fig. 3.
Certain advantages (which will be apparent later) are
obtained from a plot using logarithmic scales on both
axes, as shown in Fig. 4. For design purposes our
approximations result in a symmetrical curve about
resonance so the half curve which results from the
use of a log-log chart is sufficient.

Any coupling arrangement between two circuits
may be classified as a Y or A arrangement of circuit
elements and, in turn, either may be reduced to an
equivalent Y circuit. A general circuit, as shown in
Fig. 5, may therefore be used for analysis. This circuit
may represent a transformer, such as shown in Fig. 1,
in which Z; is the series impedance of the primary
circuit and Z, the series impedance of the secondary
circuit, while Zm is the mutual inductive reactance
equivalent to the effective inductive coupling between
coils. The output voltage will be the reactive drop
produced by secondary current in the cecondary
capacitor.
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The circuit of Fig. 5 may be solved for the ratio
between input voltage ¢ and output current 7,

_Z1Za—Zn

e/ 1,
/ Zm

9)
Applying this to the particular case of inductive
coupling and output voltage e: across a secondary
capacitive reactance X and using the series impedance

=239 7 000 (6)

Z=R (14jt), we arrive at the voltage ratio

RiR,

PaVs )] m

e/ex=

[(1 it (14jt) +

X
1

=]

1

Using the definition coefficient of coupling
K=Xn/ VX, X,

the reactances involved in this case being those of the
inductances, the term Xw?/R; R, becomes K*(Q,Q,. If

logu

‘~afefo—-+af
Fig. 3. Selectivity curve plotted
with a logarithmic vertical scale
(attenuation) and a linear hori-
zontal scale (frequency deviation)

1000
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10
logu
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—=log af
Fig. 4. Selectivity curve plotted
using logarithmic scales on both
axes. Only half of the curve is
shown since it is symmetrical
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about resonance

we assume for the moment that primary and secondary
are identical and determine the magnitude of this volt-
age ratio without regard to phase, then

2

e/er| = Vu+rQ—ep4+4e (1)
At resonance (t=0) the voltage [es | will be
!ezl_:XmXce( 1 ) (12)
' R? 1+K2Q?

Now the attenuation of this circuit to constant excita-
tion voltage e for off-resonant frequencies will be
obtained by dividing resonant voltage e, by off-resonant
voltage e, (dbtained from Equation (11)), or

U \/(1+K’Q2—t2)2+4t2
14+ K2Q?

(13)

if we make the approximation that X, and X. are
essentially constant near fo.

Fig. 6 represents.a circuit being driven by a constant
current 7. which may be constant, for our purposes,
with respect to frequency. The voltage drop icZas is
equal to Zs+iZs and so may be considered equivalent
to the driving voltage e we have used, if we neglect
the variation of Z, with frequency. Za. has been, in
our analysis, the capacitive reactance in the primary
circuit. Zb is the remainder of the circuit and may
vary in any manner with frequency. Referring to
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Equation (7), the terms gme; are by definition a-c
plate current in the amplifier tube and this corresponds
to the current 7. of Fig. 6 if the plate resistance is
absorbed in Zs. In other words, the grid voltage of the
amplifier driving the transformer may now be linked
with the secondary voltage e; by replacing e by
—-]'gMEng.

The simplicity of the results obtainable for identical
primary and secondary leads to the desire for an
equally simple result for different primary and second-
ary. By making the appropriate conversions this
may be achieved.

The geometric mean Q is

06="N0.0, (14)
and the arithmetic mean Q
04=(01+0Q2)/2 (15)

Now, if we define a new Q which will give the same
attenuation curve given by Q, and Q, when that Q is
used in both primary and secondary, that new Q will be

0=0¢ (Q6/0Q.4) (16)

This may be shown by making the substitutions which

TR ching:

Fig. 5. This general circuit arrange- Fig. 6. Circuit driven by a constant
ment can be used to represent any cou- current (with respect to frequency)
pling arrangement between two circuits

recast our equations in terms of this new Q as follows:
(17)

(18)

S=(Q/Q) h=(Q/Qn) t:
140 =(0¢/Q4)* + K20

These substitutions applied to Equation (10) give us
Ri R,

Ao Am

/en=(0a/00) (52) 14C=5+2]5) (19)
Taking magnitudes without regard to phase and reduc-
ing this to a formula for attenuation as in Equation
(13) we have

_N+o—sp+as
1+C

U (20)

which is a universal expression for attenuation which
may be applied to any pair of coupled resonant cir-
cuits. The similarity between Equations (13) and (20)
allow us to interpret the symbols in Equation (20) which
holds for circuits of unequal Q. The symbol S is a
function of frequency, just as ¢ is, and may be readily
shown to be similar to the definition of ¢ in Equation (5)

S=2AfQ/fo (21)

S may be thought of as a frequency-selective variable.
The symbol C by comparison with (10) and (18) is
seen t0 be a function of coefficient of coupling K. By
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applying the usual differential test for maxima and
minima to Equation (20), using the frequency variable
S as independent and the attenuation U as the de-
pendent variable, it will be found that a single attenua-
tion minimum is obtained for all values of the coupling
parameter C of 1.0 or less, and that for values of C of
more than 1.0 a maximum and two minima are
obtained. The coupling corresponding with C=1.0 is
called critical or optimum coupling with respect to the
shape of the selectivity curve. If Equation (20) were
plotted as in Fig. 3 a family of curves as shown in
Fig. 7 would be obtained.

Fig. 7. A family of selec-
tivity curves plotted from
Equation (20)

(C = 1.0 refers to the center curve.)

For design purposes it is more convenient to plot
these curves on log-log paper in which case approxi-
mately half of each curve is seen. The second part of
this article will deal with some characteristics of the
curves as drawn in a design chart and with a practical
problem in which they are used.

(To be continued)
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TUNED TRANSFORMERS . .,

Design of these electronic units simplified
by means of universal performance curves

PART II

By J. E. MAYNARD

Electronics Department, General Electric Company

r I AHE selectivity curves plotted in the chart,
Fig. 8, show several characteristics which,
when evaluated, are an aid in rapidly estimat-

ing the selectivity obtainable from a given number of

circuits. This information will, in addition, assist in
obtaining interpolated curves on the chart.

The first characteristic which is immediately ap-
parent in the chart is the asymptotic nature of the
curves. All the curves can be roughly represented by
two straight lines, one being the unit attenuation line
and the other being the slope asymptote, Fig. 9. The
equation of the asymptote may be obtained by in-
vestigating the value of attenuation U as the selective
variable S becomes very large. For the single circuit
U=\/’1+SZ the equation of the asymptote will be

U=S (22
On log-log paper, this is represented by a L53-deg.
line starting from U=1, S=1. If two single circuits
are used in cascade (no back coupling), this attenuation
ratio will be applied twice to the signals so that the
resultant attenuation will be {"=1+S5? and the asymp-
tote U=S’. The asymptote on log-log paper will be

plotted as log U=2 log S and therefore will have a

slope of 2/1. It is apparent that if this reasoning is

carried through for N cascaded single circuits, the
asymptote as plotted in logarithmic units will be

log U=N log S

so that the slope of the asymptote will be N. The
intercept with unity attenuation will still occur at
U=1,S5=1. ‘

For a coupled pair of circuits, we have found the

/ _ Q22
attenuation to be U= N(1+C-5)2+4 S
14C?

the notation we will let 14+C2=S®. The attenuation

formula is then
o N(Se=Sy+e s
Se?

Now, if S becomes very large, we reach the asymptote

log U=21log S—2log S,

(23)

. To simplify

(24)

This is represented by a straight line on log-log
paper which starts (U=1) from S=5S, and has a 2/1
slope. This is gratifying since we found that two single
circuits when cascaded had a 2/1 slope at the asymp-
tote. The only difference when the circuits are coupled
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is the starting point of the asymptote, which is now
S=14C? instead of S=1.0. It is apparent that two
cascaded circuits produce the same curve shape ag
would two coupled circuits with zero coupling (C =0).
Of course, this is rather impractical since zero coupling
would mean no signal transfer. However, we may
think of Sy as having a value of 1.0 for single circuits,

Using this concept of these curves, we can predict
the boundaries for any number of circuits cascaded
singly, in pairs, or in combinations of these arrange-
ments. For instance, if we cascade a single circuit and
a pair of circuits, the attenuation will be

N1+ V(S-S ta s

U= 25
Sor Sea® (25)

where So1=1.0, and the asymptote
log U=3log S—3 log Som (26)

where Som= \’ So1 Se2*. Now, it should be apparent
that for any number of circuits cascaded, the asymptote
will be determined by

log U=N log S—N log Som (27

where Som is the geometric mean of all the individual
values of S;. In other words, the boundary of any

Log UzNLogS-NLog S
Log Uz NLog S- N Log ¥Z
Log U=sN Log S

[VEX ] _
Q@ single circuits
(@) critically coupled funed pairs
sel 8aV2 $:S,, @ Overcoupled tuned pairs

Fig. 9. Selectivity curves of cascaded circuits shown by full lines;
dotted lines are asymptotes according to Equation (27)
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Fig. 8.

Universal selectivity curves for single tuned circuit and two coupled tuned circuits
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Fig. 10. Showing attenuation and deviation at various intercepts
selectivity curve produced by N single and coupled
circuits will be the line U=1 (except for slight diver-
sions in overcoupling) and the line starting from
S =Som and having the slope N when plotted on log-log
paper, as shown in Fig. 9.

This information would allow us to set up the
framework for a selectivity curve and, with a few pegs,
the curve itself could be sketched in quite rapidly.
For instance, we know that the curve will not be
likely to pass through S=3S; at U' =1 in the case of a
pair of coupled circuits, but by making this substitution
in Equation (24), we find that this particular attenua-

tion Us=2'Sy at S= =S, (28)

If the circuits are overcoupled, we may determine the
minimum points by setting the derivative of Equation
(24) with respect to S equal to zero and solving for S.
Calling this S; we obtain

Si==\Si—2==\c_1 (29)

The attenuation for. S=S; from Equation (24) will be
=2 C/S¢ (30)

In the case of overcoupled circuits, the selectivity
curve crosses the U =1 line at a value of S we will call
So’. Substituting U=1 in (24)

Se==\25S, (31)

Again in overcoupled circuits, the curve will cross its
asymptotic line and this crossover point will occur at a
value of S which may be called S4. The equation of the
asymptotic line is U=(S/Se)%.. Solving this simul-
taneously with Equation (24) the solution for S is

SA = =*=S()2/So/ (32)
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TABLE I: SELECTIVITY MEASUREMENTS

-

Attenuation | ke Deviation | ke Deviarion. | ke Deviana
s

(U) —Af ] FAS | —Af | FAf ] A | 4y
min. 0.95 — —_ 2.86 2.60 — -
min. 0.7 — — — — 6.63 6.1
1 0 0 3.9 4.02 9.5 9.3

2 +4.67 4.42 7.29 7.80 12.73 | 123

4 7.29 7.15 10.50 | 11.40 17.4 169

10 11.15 | 11.40 15.33 | 16.90 | 24.5 269

30 19.6 20.0 26.3 29.1 40.5 479

100 32.6 35.6 43.5 54.3 65.2 885

Substituting this value of S in U= (S5 '5,)?, we find th
corresponding attenuation at S4 to be

Uis=S4/S/ (33)

The intersection between the curve for a singl
circuit and any coupled-circuit curve may be found

[ c
ll; )
A U
V.T.
‘Signal E
9.Sn- ool S voltmeter
™M
|_
=

100 volts  250volts

Fig. 11. This pair of circuits, using capacity coupling, were measured
for selectivity and compared with the selectivity calculated
for the same constants

by solving U=V 1+S? with Equation (24) for S. The
result is

Si== \5¢+2 52 (34)
and the corresponding attenuation

Un=NS¢+2 Se+1 (39)

A point on the curve which is often of considerable
interest is that point at which the response falls to
approximately 70 per cent of resonant response; 1_[1
other words, where the attenuation becomes U= V2
For a single circuit, resonant frequency at this point
divided by the bandwidth (2éf) is equal to the Q of the
circuit. Substituting U= 'V2 in Equation (24), the
solution for S is

S"= ﬁ=\/5124-\/5144.50—4 (36)

These various points are illustrated graphically in
Fig. 10.

Checking Calculated Results

These formulas have been used several times ::mfi
have been found to give results which check exper:
ment very closely. A set-up was made including @
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TABLE II: CALCULATED DATA

value of Q may be used to

—_—

= { relate the variable S to
Con K C So AfatSo | Us St Afat S i | &/at$”  the frequency deviation
mmfd | % KO | A/CiF1 | Se/.37 2/Se | AT=1 | S1/.37 \/.g,~.~+\/mi §71.37 ASKC)
- i
5200 | 3.04 | 2.81 | 298 |805kc| 0.67 | 2623 | 7.10ke 426 | 1l5ke S=(24f/f) Q
| o = /=
9600 | 1.65 | 1.52 | 1.82 | 4.92 1.10 | 1.148 | 3.10 2.21 5.97 =24f(92.5/500)
10400 | .814| .753 | 1.25 | 3.38 1.60 110 | 207 =0374Af"
! The coefficient of cou-
Com U, So’ Afat S Si2 Af at Sp Ui | s Afat S Ua phr.lg is determined 1?}’ the
mmid | 2C/S¢ | \/Z (S | SY.3T |NSATESE| Sel37 | TSk ' Set 15! S4/.37 | S4.S¢ ratio between the series ca-
i pacity of C; and Cm and
5200 | .631 | 3.71 10.0 ke | 9.63 | 26.0 ke | 9.70 2.39 | 6.46 ke | 0.645 the coupling capacity Cm.
l P P y
9600 | .981 | 1.625 | 4.38 | 3.60 | 9.98 | 3.8 | 20¢ |551 i 1.252 e know, however, that it

takes 168 micromicrofarads

6S]7 amplifier, a pair of circuits coupled capacitively
and a vacuum-tube voltmeter as shown in Fig. 11.

The inductance of the individual coils was such that
they tuned to 500 kilocycles with a capacity of 168
‘micromicrofarads. Selectivity measurements made at
500 kilocycles are tabulated in Table I. The data are
plotted in Fig. 12.

The measured Q of the primary coil was 87. Taking
the tube plate resistance to be 1.0 megohm, the
effective primary Q may be determined from the
parallel impedance of the tube and the circuit at
resonance

Circuit Z=X.0=(1910) (87) =166,000 ohms
Effective primary impedance Z.=ZRp/(Z+R;)
=142,000 ohms

Effective 0=2Z./X.=142,000/1910=74.5
The measured Q of the secondary coil was 115. The tube
voltmeter is assumed to have caused no effective loading
on the secondary. The equivalent pair of equal Q
circuits would have a Q essentially equal to the geo-
metric mean of 115 and 74.5, which is 92.5. This

100
40 /
/‘/
20 5
/,
/,
)
_§ 10
s N
g / Y2
< U
12
2
U, o ® //
2 \ 4
/
S eo LP'
/ 1] (Y
, . o
o /,
or
04 4F | KC 2 Iu a Un 10 20 40 100
—— — Asymptotes [ " ® c, =19,400 MMF
—%- Experimental curves v, ° @ Cu = 9,600 MMF
o Colculated  points ® C, = 5200 MMF
Fig. 12. Comparison of measured and calculated selectivity of the

capacity-coupled circuits of Fig. 11

to tune each coil. There-
fore, if it is assumed that 10 micromicrofarads exist in
external circuits of each coil, the series capacity of Ct
and C» must always be 158 micromicrofarads and the
coefficient of coupling is very nearly

K= 158/Cm

The remainder of the calculations are according to the
developed formulas and are tabulated in Table II.

The data in Table I and Table II are plotted in
Fig. 12. It will be noted that positive and negative
frequency deviations from resonance are plotted
together from the measured data, calculated data are
symmetrical.

A short discussion of the method of selectivity
measurement may be of interest. The signal generator
(oscillator) in Fig. 11 is provided with a calibrated
output over a wide range of volts, millivolts, and
microvolts. This signal generator is set at resonant
frequency and some convenient output level on the
vacuum-tube voltmeter, which can be obtained for a
small signal from the signal generator, is chosen as
“normal” level. The input required from the signal
generator is called “‘normal input’’ (NI). The signal
input is then increased to a desired attenuation
level such as two times. The signal is then 2XNI’
or twice normal input. With this input voltage level,
the signal generator is tuned first higher then lower
than resonant frequency until the output falls to its
“‘normal” level to give a +Af and a — Af reading
from the frequency calibration of the signal generator.
This procedure is repeated to obtain the various
frequency deviations corresponding with different
amounts of attenuation as in Table I.
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